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Abstract. During the last decades, ecosystems have suffered a decline in natural resources due to climate
change and anthropogenic pressure. Specifically, the European rabbit introduced by humans, as well as
drought episodes, have led to a change in the vegetation structure of a mountainous ecosystem: Teide
National Park in Spain. Teide managers studied, with field-based traditional methods, how the two
keystone vegetation species, Spartocytisus supranubius and Pterocephalus lasiospermus, have changed their
dynamics in this vulnerable and heterogenic ecosystem. However, remote sensing is an important tool for
classifying, monitoring, and managing large areas in a fast and economic way. This work proposes a
methodological framework to monitor the changes produced in this protected area using multi-source
remote sensing imagery. The results strengthen and extend the analysis followed by the National Park
managers, demonstrating that S. supranubius has decreased its population while P. lasiospermus has
increased. Moreover, this study presents thematic maps of the species of interest, as well as its specific cov-
erage at different dates, providing quantitative data difficult to get with traditional approaches.
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INTRODUCTION

Ecosystems are exposed to high pressure due
to intensification of agricultural land use, tour-
ism, development, and climate change, being
highly dynamic in space and time. Specifically,
climate change is producing important variations
in entire communities in those areas where it
manifests most intensely, such as regions at
greater latitude and areas of higher altitude.
Thus, ecosystem deterioration has a strong nega-
tive impact in the local biodiversity and might
put rare and threatened species at a serious

extinction risk (Pepin and Lundquist 2008, Span-
hove et al. 2012).
In this context, to understand ecosystem

dynamics and its consequences is vital for the
success of their conservation and restoration,
especially on the services they provide (Mueller
and Geist 2016). Thus, it is important to imple-
ment accurate monitoring methodologies of land
surface attributes, as it is critical for dealing with
uncertainty in the management of large ecosys-
tems (Coppin et al. 2004, F€orster et al. 2014).
Hence, for large-scale monitoring efforts, two
general approaches have been defined (Manley
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et al. 2000): retrospective and predictive. Retro-
spective monitoring seeks to detect changes in
status or condition, while predictive monitoring
seeks to detect indications of undesirable effects
before they have a chance to occur or become
serious. Both retrospective monitoring and pre-
dictive monitoring deal about detecting changes
in a large-scale area. In that regard, change detec-
tion could be defined as the process of identify-
ing differences in the state of a phenomenon at
different times (Singh 1989). The time and accu-
racy of change detection on the Earth’s surface
can provide guidance for resources management
by using multi-temporal datasets related to state
of changes (Lu et al. 2004).

An ecological monitoring program should ide-
ally consider ecological relevance, statistical
credibility, cost-effectiveness, flexibility, and
transferability to other systems, as the most
important criteria (Mueller and Geist 2016,
Mason et al. 2017). In this context, remote
sensing could be an important tool to monitor
ecosystems, at community and species level to
detect population trends, that guide in the estab-
lishment of conservation objectives with the pur-
pose of avoiding the transition to undesirable
situations (Mason et al. 2017).

Remote sensing can contribute to a better
understanding of natural habitats, their spatial
distribution, and their conservation status, being
considered an ideal data source for land-cover
classifications in large areas (Corbane et al.
2013). Hence, it is a valuable tool for monitoring
and managing ecosystems, as it allows the acqui-
sition of data in remote and inaccessible areas
(Spanhove et al. 2012, F€orster et al. 2014).
Besides, it has been successfully used for many
ecological studies, such as detecting land-cover
changes, monitoring crops, deforestation, forest
fires, estimating carbon sequestration, detecting
vegetation stress, and other applications (Aplin
2004, Spanhove et al. 2012, Alqurashi and
Kumar 2013). This technology is important since
traditional field-based assessment methods are
sometimes subjective, time-consuming, data
lagged, and often too expensive. Thus, remote
can complement and add information to tradi-
tional field-based methods providing indicators
for different spatial and temporal scales and
involving varying temporal revisit frequencies

up to daily observations (Xie et al. 2008, Nunez-
Casillas et al. 2012, F€orster et al. 2014).
The area of study is the Teide National Park

(Tenerife, Spain), a vulnerable high mountain
ecosystem strongly stressed by climate change.
This study describes a methodology framework
to monitor non-herbaceous species of these
ecosystems using remote sensing imagery. The
conservation managers have analyzed how the
two keystone species have changed their popula-
tion dynamic due to the abundance of European
rabbits and recurrent drought episodes. Specifi-
cally, the study proposes a post-classification
analysis to study those dynamics by using
remote sensing multi-source and multi-temporal
data, in order to complement and add accurate
information to the field observations, for a future
ecosystem management.

STUDY CASE DESCRIPTION

Study area
The study area is a high mountain ecosystem

in the subtropical island of Tenerife (28°060 N
15°240 W), the Teide National Park with
13,679 ha of total extension. The dominant vege-
tation is a meso-oromediterranean shrub domi-
nated by the endemic broom, Spartocytisus
supranubius (del Arco Aguilar et al. 2010)
(Fig. 1).
The National Park is formed by a large caldera,

inside which the Teide volcano rises up to an alti-
tude of 3718 m, being the highest peak of Spain.
According to the records in the database of the
Teide National Park, a total of 206 vascular
plants, mostly herbaceous, acclimated to the
stressed environmental conditions of high alti-
tude, grow there. Of these taxons, 7% are ende-
mic from Teide National Park, whereas the 15%
are endemic from Tenerife and 32% are endemic
from Canary Islands. The adaptations to the alti-
tude of these species are manifested in the shape
of the leaves (Lausi and Nimis 1986), and the
canopy and the physiology of the plants (Perera-
Castro et al. 2017b), which have been well stud-
ied in the case of the Spartocytisus supranubius
(Teide broom) (Gonz�alez-Rodr�ıguez et al. 2017)
and the pine Pinus canariensis (Canary pine)
(Brito et al. 2014). Indeed, S. supranubius is one
of the most important plant species, as well as
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P. canariensis, Descurainia bourgaeana (Hierba
pajonera), and Pterocephalus lasiospermus (Ros-
alillo de cumbre). The latter is particularly sur-
prising, since in the middle of the last century, it
was considered a very rare species, of which only
a few specimens were known (Sventenius 1946).
However, nowadays, it is the most abundant
species in the National Park, possibly due to its
thermophilic character (Perera-Castro et al.
2017a) and its low palatability for herbivores
(Cubas et al. 2018). Fig. 1 shows the species
selected to the study.

Ecosystem description and problematic
The Teide National Park has been historically

the object of several human uses, mainly led by
the grazing of goats and the extractive activities
of soil and wood of S. supranubius. Nowadays,
goats have been eradicated, while extraction of
wood is considered a traditional activity of low
intensity, being beekeeping the only remaining
activity. The greatest current challenges for the
management of the Park are public use, her-
bivory pressure due to rabbits and droughts epi-
sodes, and temperature increase (climate

change). Regarding public use, it is about mak-
ing compatible the enjoyment of nature, by more
than four million visitors a year, with its
conservation.
The presence of herbivores continues to be a

factor of pressure on the flora, especially the
European rabbit (Oryctolagus cuniculus). The rab-
bits were introduced on Canary Islands during
15th–16th centuries by the Castilian conquerors,
but their populations have increased in the last
decades, reaching densities of up to 3 rabbits/ha
some years, because the climate in the summit is
becoming less cold (Mart�ın et al. 2012). They
play a key role in the functioning of the ecologi-
cal systems (Chapuis et al. 2004). Oryctolagus
affects ecosystems by producing changes in the
structure and composition of the soil, as well as
in the richness and diversity of plant species.
Cubas et al. (2018) studied how rabbits influ-
enced the population dynamics of two of the
most abundant plants of this habitat, S. supranu-
bius and Pterocephalus lasiospermus, demonstrat-
ing an antagonistic effect: While rabbits limited
the expansion of S. supranubius because when
feeding on their seedlings prevented the

Fig. 1. (a) Teide National Park, location and species of interest: Blue line delimits the total National Park and
the blue square the study area. (b) Spartocytisus supranubius, (c) Pterocephalus lasiospermus, (d) Descurainia
bourgaeana, and (e) Pinus canariensis.
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regeneration of the plant, at the same time they
favored the expansion of P. lasiospermus because
this plant was able to take advantage of the extra
nutrients contribution from the latrines of the
herbivore and it was less palatable than the
brooms. This study was made in small areas of
the Park through traditional field-based assess-
ment methods.

Spartocytisus supranubius is the key species of
the high mountain ecosystem of Tenerife. Its pop-
ulations were reduced at the beginning of the last
century until the declaration of the Teide
National Park led to the suppression of pastoral
activities in the sixties. Since then, their popula-
tions experienced a considerable recovery; how-
ever, this positive trend slowed down in the
1980s, when episodes of death began to appear
matching with a strong increase in temperature,
drought episodes, and, probably, an increase
in rabbit populations. Extinction events of
S. supranubius affect the entire National Park but
are most notable in the southern area where
extreme drought severely reduced the secondary
growth of brooms (Olano et al. 2017, Cubas et al.
2018). The dendrochronological analyses, elabo-
rated by Olano et al. (2017), studied the impact
of the droughts of 2008 and 2012, underlining
that they were important stress factors behind
the death of S. supranubius.

Remote sensing can complement and add rele-
vant information to Cubas et al. (2018) work,
covering a larger area of study and quantifying
the surface area of the same species considered
in this study, as well as other important species
of the Teide National Park.

Remote sensing framework
Remote sensing involves measuring electro-

magnetic radiation from features on the Earth’s
surface, providing a basic representation of land-
cover variation (Aplin 2004). In this context,
change detection is one of the most important
applications in remote sensing (Mouat et al.
1993, Petit and Lambin 2001, Volpi et al. 2013). It
aims to identify the changes occurred by jointly
analyzing two or more images over the same
geographical scene at different times (Gong et al.
2016).

The ideal situation would be to have data from
the same sensor, same dates during different
years and under same conditions; however, this

is not always possible, so the use of multi-source
data is the best approximation. In fact, the inte-
gration of multi-source and multi-temporal
remote sensed imagery is one of the most chal-
lenging tasks and an active area in the field of
change detection (Lu et al. 2004, Jianya et al.
2008, Volpi et al. 2013, Gong et al. 2016). More-
over, the use of multi-source images for change
detection is worth to be considered and
researched deeply, while multi-temporal imagery
has the potential to compensate for possible bias
in the spectral information caused by the plants
being in different phenological phases.
Besides, the type of imagery is a major factor

in the classification analysis, and hence, in
change detection studies. The evolution of space-
borne remote sensing has led to the introduction
of advanced multispectral (MS) and hyperspec-
tral (HS) imagery from the visible to the near-
infrared spectrum (400–2500 nm). Multispectral
satellite imagery with three to eight bands is
commonly used in land-cover classification, veg-
etation studies, texture, land-cover changes, for-
est fires, and others (Rodriguez-Galiano et al.
2012, Feilhauer et al. 2013). The launch, in the
last decades, of high spatial resolution satellite
sensors (i.e., IKONOS, QuickBird, WorldView)
has been an advance of remote sensing in biodi-
versity analysis and monitoring. Also, for more
heterogeneous ecosystems, such as the shrub-
lands or tropical forests, high spatial resolution
HS images are ideal for habitat monitoring
(Jim�enez-Michavila 2011) because the availability
of tens to hundreds of spectral bands provides
more information to discriminate and analyze
the status of different species. The lack of HS
satellite imagery with high spatial resolution has
led to the use of airborne HS sensors. HS air-
borne imagery allows the simultaneous acquisi-
tion of spectral bands with high spatial
resolution, increasing the possibility of accu-
rately discriminating the land covers of interest
(Fauvel et al. 2013, Ballanti et al. 2016). However,
HS imagery is more expensive and requires
higher computational cost.
In this context, classifying the species of the

Teide National Park requires a spatial resolution
less than 1 m in order to discriminate at species
level due to the complexity of the ecosystem,
with mixed vegetation and small shrubs. There-
fore, the change detection study, covering 15 yr,
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was carried out using multi-source and multi-
temporal data. Three different very high-
resolution images were used in the study, two
MS provided by the QuickBird (QB) and
WorldView-2 (WV-2) sensors, and one HS
recorded by the CASI 1550i sensor (compact air-
borne spectrographic imager) (Table 1, Fig. 2).

The date is an important factor in the selection
of the imagery to be analyzed. Thus, the Teide
images acquisition was done during the end of
the spring season as the vegetation species have
greater spectral separability.

METHODOLOGY

When implementing a change detection project,
the following major steps are involved (Lu et al.
2004): (1) image pre-processing; (2) classification;
(3) selection of suitable techniques to implement
change detection analyses; and (4) accuracy
assessment. The methodology framework fol-
lowed in the study is shown in Fig. 3. It was
implemented using ENVI 5.1 image processing
software (Exelis Visual Information Solutions,
Boulder, Colorado, USA) and MATLAB software
(MathWorks, Natick, Massachusetts, USA).

Pre-processing
Prior to a land-cover change analysis, some pre-

processing steps are necessary to standardize the
multi-source and multi-temporal images. Remote
sensors provide raw data images; thus, it is neces-
sary to apply correction techniques and to perform
image pre-processing in order to obtain high-qual-
ity imagery (Ibarrola-Ulzurrun et al. 2018).

Radiometric and atmospheric correction.—Apart
from the radiometric calibration to convert digi-
tal numbers to radiance values, there are differ-
ent ways of correcting remote sensing data for

atmospheric effects: simple image-based meth-
ods and more complex algorithms based on a
radiative transfer model of the atmosphere. In
this work, complex models were applied: specifi-
cally, the fast line-of-sight atmospheric analysis
of spectral hypercubes (FLAASH) to the satellite
data (Marcello et al. 2016) and the atmospheric
correction (ATCOR-4) to the airborne imagery
(de Miguel et al. 2014).
Pansharpening and resizing.—High-resolution

MS platforms record data simultaneously by
using MS and panchromatic (PAN) sensors, pro-
viding both types of imagery of the same scene
with different spatial and spectral resolution. The
MS image is characterized by having higher
spectral resolution, while the PAN image
obtained from this sensor has a higher spatial
resolution. Image fusion, or pansharpening,
allows to improve the spatial quality of the MS
image. Thus, the pansharpening data fusion tech-
nique is defined by the process of merging MS
and PAN images to create new MS fused images
with higher spatial resolution. This process is
very important in the analysis of heterogeneous
and mixed shrublands ecosystems, where the
size of the plants to be analyzed is small.
After a detailed review of the state-of-art in

pansharpening techniques, pansharpening algo-
rithms achieving optimal performance were
assessed and selected in previous studies per-
formed for the Teide National Park (Ibarrola-
Ulzurrun et al. 2017a, b). Thus, it was decided to
use the Wavelet “�a trous” algorithm to perform
the pansharpening process in QB and WV-2 ima-
gery to increase the spatial resolution by a factor
of four with the minimum degradation of the
spectral information.
The CASI imagery does not have a PAN

image; however, as it appears in Table 1, its

Table 1. Specifications of the multispectral (MS) and panchromatic (PAN) images, QuickBird (QB) and
WorldView-2 (WV-2), and the hyperspectral (HS) image, compact airborne spectrographic imager (CASI).

Image type Spatial resolution Spectral resolution Acquisition date Product Reference

QB MS: 2.4 m 4 MS bands 26 May 2002 Orthoready Digital Globe†
PAN: 0.65 m 1 PAN band

WV-2 MS: 1.85 m 8 MS bands 16 May 2011 Orthoready Digital Globe
PAN: 0.48 m 1 PAN band

CASI 0.75 m 68 HS bands 1 June 2017 Level 2c‡ de Miguel et al. (2014)

† https://www.digitalglobe.com/resources/satellite-information
‡ Level 2c: Radiometrically and atmospherically corrected, and orthorectified.
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spatial resolution is higher than both MS images
(QB and WV-2) because CASI flies on board an
aircraft instead of a satellite at much higher alti-
tude. Thus, a pixel resizing was performed in
order to obtain the same pixel size (0.5 m), using
nearest neighbor algorithm (ENVI 2004), to avoid
the mixing of information from neighboring
pixels.

Orthorectification.—Orthorectification schemes
were applied in order to minimize the distortions
mainly induced by the topography. Some geo-
metric error sources could be the variation of the
movement in the platform and in the measuring
instruments, the viewing angles of the sensor,
the atmosphere conditions, Earth’s curvature and
rotation, topographic effects, etc. In this context,
orthorectification was necessary as we are deal-
ing with a mountainous ecosystem. A rational
polymodal orthorectification (RPC) model was

performed, which replaces the rigorous sensor
model with an approximation of the ground-to-
image relationship (ENVI 2004). The orthorectifi-
cation errors in each scene were compared
visually with images obtained from GRAFCAN
(Cartograf�ıa de Canarias S.A.) and quantitatively
with existing geodesic points (http://visor.grafca
n.es/visorweb/). The CASI image was orthorecti-
fied by georeferenced hemispherical-directional
reflectance factor (de Miguel et al. 2014).
Co-registration.—Image co-registration is the

process of geometrically aligning two or more
images. Precise co-registration of the images is
required in change detection studies. The impor-
tance of accurate spatial co-registration is obvi-
ous because large spurious results of change
detection will be produced if there is misregistra-
tion. It is difficult to achieve high accuracy in the
co-registration between multi-temporal and

Fig. 2. Remote sensing imagery in RGB color composite: (a) QuickBird of 2002 (R: 3, G: 2, B: 1); (b) WorldView-2
of 2011 (R:5, G: 3, B: 2); (c) compact airborne spectrographic imager (CASI) of 2017 (R:29, G: 20, B: 12).

Fig. 3. Diagram followed in the change detection study.
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multi-source images due to many factors, that is,
imaging models, imaging angles, topography,
curvature and rotation of the Earth or sensor
type, and data acquisition. For these reasons, in a
mountainous area, an orthorectification is
needed first (Jianya et al. 2008), as it was per-
formed in this study. The geometric relationship
between the warp image to register and the base
image was obtained through a number of repre-
sentative and well-distributed tie points and,
then, applying the corresponding geometric
transform. In the case of this study, a minimum
of 40 distributed ground control points (GCPs)
were collected for each pair of images, consider-
ing the WV-2 data as the base image. A polyno-
mial method was used with a nearest neighbor
resampling (ENVI 2004) to fit the images in the
overlapping areas.

Dimensionality reduction for CASI imagery.—
Regarding HS image, due to the high number of
spectral bands, an additional pre-processing step
is sometimes required. HS classification is a chal-
lenging task due to the presence of redundant
features, the imbalance among the limited num-
ber of available training samples for the super-
vised classification, and the high dimensionality
of the data (Ghamisi et al. 2017). Therefore, the
high level of data dimensionality in HS imagery
poses a problem for classifications because of the
unbalance between the high dimensionality of
the input data and the number of training sam-
ples used in the supervised classification process,
known as the “Hughes phenomenon” (Hughes
1968). Hence, when the number of spectral bands
(dimensionality) increases, with a constant num-
ber of training samples, the accuracy of the statis-
tics estimation decreases (Ghamisi et al. 2015).
To solve this issue, data reduction through band
selection decreases dimensionality without the
need to increase the amount of training samples.

In a previous study, Ibarrola-Ulzurrun et al.
2017c compare the performance of different
dimensionality reduction techniques and assessed
strategies for selecting the most suitable number
of components to increase the performance in the
classification of CASI imagery. The study con-
cluded that minimum noise fraction (MNF) was
the most suitable dimensionality reduction tech-
nique, which has also been supported by other
authors (Melgani and Bruzzone 2004, Tarabalka
et al. 2010, Ibarrola-Ulzurrun et al. 2017c).

Vegetation index masking
Once the pre-processing steps were completed,

images with different spectral bands at 50 cm of
spatial resolution providing reflectance values of
the Earth surface were obtained. The next step
was to create a mask to eliminate non-vegetation
pixels. The reflectance curves (spectral signa-
tures) for the different wavelengths of healthy
green plants have a characteristic shape that is
dictated by various plant attributes (Fig. 4).
Due to the characteristic vegetation spectral sig-

nature, vegetation indices are common to enhance
vegetation information (Yamano et al. 2003). The
normalized difference vegetation index (NDVI)
(Rouse et al. 1974) and the modified soil-adjusted
vegetation index (MSAVI2) (Huete 1988) are the
most suitable for estimating quantitative charac-
teristics of vegetation in dry and semi-dry regions
(Galv~ao et al. 1999, Wang and Tenhunen 2004,
Medina-Mach�ın et al. 2019). NDVI is the ratio
between the Red (RED) and the near-infrared
(NIR) regions (Eq. 1), while MSAVI2 is a more
complex index applied to areas with a high
degree of exposed soil surface (Eq. 2).

NDVI ¼ NIR� REDð Þ
NIRþ REDð Þ (1)

MSAVI2

¼
2NIRþ 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NIRþ 1ð Þ2 � 8 NIR� REDð Þ

q

2
(2)

After calculating both vegetation indices, box-
plot analyses were obtained in order to select the
most suitable vegetation index to distinguish
between vegetation and non-vegetation areas.
Then, the vegetation index threshold was used to
create a mask to remove the non-vegetation pix-
els to subsequently classify vegetation areas at
species level.

Classification
Remote sensing classification assigns a unique

label to each pixel vector so that it is well-defined
by a given class with a degree of uncertainty (Xie
et al. 2008, Bioucas-Dias et al. 2013). The major
steps involved in the classification step may
include determination of a suitable classification
system, such as selection of training samples,
selection of a suitable classification model, and
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accuracy assessment. The user needs the scale of
the study area, the economic state, and the ana-
lyst skills, important factors influencing the selec-
tion of the data, the design of the classification
procedure, and the quality of the classification
results (Lu and Weng 2007).

Supervised classification methods are based on
learning an established classification from a train-
ing dataset, which contains the predictor variables
measured in each sampling unit and assigns prior
classes to the sampling units (Xie et al. 2008).
Training samples are usually collected from field-
work or using images with fine spatial resolution.
In the case of this study, several field observation
campaigns were carried out to provide accurately
located and quantitative ground reference data
for each vegetation species of interest. Random
sampling was used to select both training and
testing regions of interest (ROIs) for the classifica-
tion. This procedure was difficult to implement
because of the variability of species spatial distri-
bution and the small vegetation patches.

The first step in the classification process was
to determine the classes appearing in the study
area and obtain the database set of training and
testing ROIs for each one. The classes were cho-
sen according to criteria of representativity and

abundance. The selected species were as follows:
S. supranubius, P. lasiospermus, D. bourgaeana,
and P. canariensis (Fig. 1). In order to obtain reli-
able classification maps, the training and testing
samples were selected during the field observa-
tions in well-known sites around the study area.
Regarding the classification model, support

vector machines (SVM) (Cortes and Vapnik 1995)
have demonstrated their effectiveness in several
remote sensing applications and in HS classifica-
tion (Camps-Valls et al. 2008, Ballanti et al.
2016). SVM contain a machine learning algo-
rithm that separates classes by defining the opti-
mal hyperplane between them, based on support
vectors that are defined by training data (Moun-
trakis et al. 2011). Specifically, several researches
address the problem of very high-resolution
classification by using SVM with a lower compu-
tational cost (Bruzzone and Carlin 2006, Ibarrola-
Ulzurrun et al. 2017b, Xia et al. 2017). SVM was
also selected because another previous study car-
ried out in the same study area (Ibarrola-Ulzur-
run et al. 2017b), comparing different algorithms,
demonstrates the SVM capability to obtain
accurate classification maps.
Evaluation of classification results is an impor-

tant process in the mapping procedure. Thus, the
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Fig. 4. Vegetation spectral signature. Green signature: healthy vegetation; red signature: dry vegetation. Shad-
owed areas: VIS, visible wavelength corresponding to the chlorophyll peak; RE, red edge; NIR, near-infrared
wavelength corresponding with cell structure; MIR, middle infrared corresponding to the water absorption
wavelengths.
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statistical accuracy assessment used in the study
was the standardized confusion error matrix. The
confusion matrix approach is the most widely
used and reports two global accuracy measure-
ments, overall accuracy, and kappa coefficient.
The kappa coefficient describes the proportion of
correctly classified validation sites after random
agreements are removed (Rosenfield and Fitz-
patrick-Lins 1986). Moreover, it is recognized as a
powerful method for analyzing a single error
matrix and for comparing the differences
between various error matrices (Lu and Weng
2007). Finally, combining classification with

preliminary feature extraction and reduction
techniques increases the classification accuracy.

Change detection analysis
The final step in the framework (Fig. 3) is the

analysis of changes. After a revision of the state
of the art of different change detection methods,
the post-classification technique was decided as
the most suitable method for the study. It is a
useful technique for extracting land used and
land-cover information, which independently
classifies each image and compares the classified
maps on a pixel-by-pixel basis to identify

(a) (b)

Fig. 5. (a) Original multispectral image and (b) fused image. Top row: QuickBird images. Bottom row:
WorldView-2 images.
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changes. Besides, it minimizes the impacts of
atmospheric, sensor, and environmental differ-
ences between multi-temporal and multi-source
images. Thus, no precise atmospheric correction
is strictly required during the pre-processing of
each scene. Moreover, it is useful because it pro-
vides details about changes and avoids selecting
appropriate thresholds (Coppin et al. 2004,
Alqurashi and Kumar 2013).

RESULTS

Pre-processing results
After the radiometric and atmospheric correc-

tions, the wavelet “�a trous” pansharpening tech-
nique was applied. The spatial resolution

obtained after the pansharpening step and the
resizing was 0.5 m for both MS and HS imagery.
Fig. 5 shows the spatial improvement of the MS
bands and the importance of this step due to the
small size of vegetation. Afterward, orthorectifi-
cation was carried out, achieving an improved
error around 2–2.5 m (reference image error
~36 m) (Fig. 6). Once both satellites images were
orthorectified, a precise image co-registration
was performed to almost achieve subpixel
accuracy.
Regarding the dimensionality reduction of

CASI imagery, a selection of the suitable compo-
nents was carried out analyzing the eigenvalues
and the standard deviation values of the entropy
(Ibarrola-Ulzurrun et al. 2017c). Besides, a visual

Fig. 6. (a) Orthophotograph of GRAFCAN and images after orthorectification: (b) QuickBird image and
(c) WorldView-2 image.

Fig. 7. Minimum noise fraction (MNF) components of the compact airborne spectrographic imager (CASI)
image.
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Fig. 8. Normalized difference vegetation index (NDVI) and modified soil-adjusted vegetation index (MSAVI2)
boxplot diagrams for: (a) QuickBird (QB), (b) WorldView-2 (WV-2), and (c) compact airborne spectrographic ima-
ger (CASI).
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assessment of the MNF components was made
to determine which components are spatially
coherent and which contain noise. Based on this
procedure, a total of 8 components (Fig. 7) were
chosen without losing relevant information for
the vegetation classification for the final classifi-
cation, instead of the original 68 bands.

Concerning the generation of a vegetation
mask, analysis of NDVI and MSAVI-2 values
was accomplished. Boxplot diagrams (Fig. 8)
were obtained to study the behavior of NDVI
and MSAVI2 values in vegetated (162,538 pixels)
and non-vegetated (69,164 pixels) areas, covering
the different plant species, as well as the different
types of bare soil, road, and urban areas. The
threshold was set in the first quartile of each
index. Even though it was not possible to set an
exact threshold to separate vegetated and non-
vegetated areas, due to the spatial resolution of
the imagery and to the presence of mixed pixels,
NDVI more precisely discriminates vegetated
and non-vegetated areas than MSAVI2. There-
fore, NDVI was chosen to generate the vegeta-
tion mask configuration (Table 2).

Finally, Fig. 9 (top) shows the pre-processed
and masked images used for the classification
step. It can be appreciated how the vegetated
area has increased from 2002 to 2017.

Classification results
It is important to highlight the difficulty in

classifying some types of vegetation due to the
complexity of this heterogeneous shrubland
ecosystem with mixed and small vegetation spe-
cies such as D. bourgaeana. Hence, the major
impact on the mapping of different types of veg-
etation is the misclassification created within the
plant species, due to their spectral similarity and
the mixing contributions from different covers in
some pixels. Thus, it is important to create a reli-
able training sample database, which allows an
accurate supervised classification to be made.
This assumption leads us back to the importance
of obtaining a fused image with the maximum
spatial quality that allows to differentiate some
small size species from others, avoiding pixel
misclassification but also preserving the original
spectral information.

A visual inspection of each classification was
carried out to identify areas of potential error
contrast between classifications. Moreover, the

results of the classification were quantitatively
assessed using the confusion matrices and the
overall accuracy and kappa coefficient.
Table 3 shows the SVM classification overall

accuracy and the kappa coefficient. It can be
observed that accuracy increases depending on
the type of imagery, being CASI imagery the
most suitable sensor to obtain accurate thematic
map, followed by WV-2 imagery. The main rea-
son is the higher available number of spectral
bands for the classification. Fig. 9 (down) pre-
sents the thematic maps for each scene. The
increase in S. supranubius in 2015, followed by a
decrease in 2017, was visually observed. Ptero-
cephalus lasiospermus increases its coverage area
from 2002 to 2017. D. bourgaeana seems to suffer
a reduction of its cover area too, while Pinus
canariensis remains stable.

Change detection analysis
Table 4 and Fig. 10 show the total vegetation

and species coverage in the different years.
Knowing the spatial resolution (0.5 m of pixel
size) of each scene, it is possible to obtain specific
coverage values in square kilometers. It is
observed how the total vegetation has almost
doubled since 2002. Moreover, it is demonstrated
that P. canariensis and D. bourgaeana have barely
changed their coverage area, as it was expected
taking into account the previous works of Olano
et al. (2017) and Cubas et al. (2018). On the other
hand, Pterocephalus lasiospermus has increased
from 2002 to 2017, tripling its initial extent in the
last 15 yr; while S. supranubius has experienced
an increase of 0.032 km2 from 2002 to 2011, how-
ever, its population has decreased by 2017 to
lower values than in 2002, with a net loss of
0.014 km2 in the 15 yr analyzed.
The results are influenced by the many factors

such as sensor spatial resolution, mixing of spe-
cies, and classification accuracies. However, they

Table 2. Normalized difference vegetation index
(NDVI) threshold to discriminate vegetated and
non-vegetated areas in each image.

Image Threshold

QB 2002 0.18
WV 2011 0.22
CASI 2017 0.20
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provide quite accurate information about the
dynamics of the Teide ecosystem and it is possi-
ble to obtain reasonable trends of the vegetation
changes in the habitat.

DISCUSSION

A complex ecosystem, with mixed vegetation
and small size, was analyzed using remote sens-
ing data, being a challenging methodological

framework. Specifically, it was observed the
necessity to perform accurate pre-processing
steps in order to improve the spectral and spatial
quality of the imagery. Vegetation indices were

Fig. 9. Top row: Masked and pre-processed images: (a) QuickBird (QB), (b) WorldView-2 (WV-2), and (c) com-
pact airborne spectrographic imager (CASI). Bottom row: Classification maps: (a) QuickBird, (b) WorldView-2,
and (c) compact airborne spectrographic imager (CASI) imagery (light green, Spartocytisus supranubius; dark
green, Pinus canariensis; violet, Pterocephalus lasiospermus; yellow, Descurainia bourgaeana).

Table 3. Support vector machine (SVM) classification
overall accuracy and kappa coefficient.

Image Overall accuracy (%) Kappa coefficient

QB 77.99 0.632
WV-2 85.03 0.741
CASI 95.77 0.922

Table 4. Vegetation and plant species coverage in the
different scenes.

Species

QB 2002 WV 2011 CASI 2017

% km2 % km2 % km2

Total vegetation 31.33 0.215 56.61 0.388 59.38 0.407
Pinus canariensis 1.16 0.008 1.24 0.009 1.90 0.013
Spartocytisus
supranubius

11.69 0.080 16.35 0.112 9.65 0.066

Pterocephalus
lasiospermus

15.83 0.109 34.05 0.234 47.16 0.323

Descurainia
bourgaeana

2.66 0.018 4.97 0.034 0.68 0.005
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also applied to improve the final mapping accu-
racy. After performing the specific pre-processing
steps, it was possible to obtain quite reliable the-
matic maps applying the SVM algorithm, prop-
erly trained and parameterized, which were used
for the change detection study.

Multi-source and multi-temporal remote sens-
ing imagery were used to complement and add
accurate information to field observations for a
future ecosystem management. Important out-
comes of the study are the increase in the cover-
age of vegetation (practically doubled) in 15 yr,
the dominance of Pterocephalus lasiospermus
whose extension has almost tripled, and the
decline of S. supranubius (despite the rebound of
2011), corroborating the works by Olano et al.
(2017) and Cubas et al. (2018), for specific test
locations. It surprises the rapid expansion of
P. lasiospermus, a very rare species several dec-
ades ago, whose current predominance is accel-
erated vigorously, altering the landscape in this
sector of the high mountain ecosystem. Undoubt-
edly, the aforementioned facilitating effect of her-
bivores, their better resistance to herbivory, and
their own thermophilic character are factors that
help explaining their considerable increase in a
warming scenario.

Thanks to remote sensing, it has been possible
to study those changes in a larger area, as well as
obtaining quantitative results of how the species
coverage and location have changed during
years. However, some advanced tasks have to be
undertaken before satisfactory results can be

achieved (i.e., suitable data, pre-processing,
develop accurate classification models, knowl-
edge of the study area, and time and cost restric-
tions). In conclusion, the remote sensing
framework proposed is ecologically relevant, sta-
tistically credible, cost-effective, flexible, and
transferable to other systems giving a guidance
to environmental managers to consider remote
sensing as a useful tool. Moreover, hints and
advices are given to facilitate the framework
application to other habitats and ecosystems.
Future studies will include the systematic

change detection monitoring in the whole Teide
National Park, using WorldView-2 and World-
View-3 imagery, in order to obtain more accurate
results and with a continuity during years. More-
over, vegetation features, habitat heterogeneity,
species richness, and species–area relationships
can be extracted from this study. Thus, specific
research plans could be implemented following
the proposed framework.
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